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In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a
two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and
an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee
a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find
evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the
liquid-vapor ratio.
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I. INTRODUCTION

Lattice Boltzmann(LB) models approach physical phe-
nomena in fluid systems using a phase-space discretized
form of the Boltzmann equation[1–5]. Conservation equa-
tions are derived by calculating moments of various order of
this equation[6–12]. After the publication of the first LB
model which exhibits phase separation[13,14], LB models
were widely used to investigate the complex behavior of
single- or multicomponent/phase fluid systems[3,5] and re-
fer mainly to isothermal systems[15–25]. This limitation
comes from the constant value of the lattice speedcl which
in LB models is related to the temperatureT, the lattice spac-
ing ds and the time stepdt through two separate relations

cl =
cs

Îx
=ÎkBT

xm
, s1d

cl =
ds

dt
, s2d

wherecs=ÎkBT/m is the isothermal speed of sound for an
ideal fluid, m is the mass of fluid particles,x is a constant
depending on the geometry of the lattice, andkB is Boltz-
mann’s constant[5,26].

According to the “collide and stream” philosophy of LB
models, fluid collides in the lattice nodes and thereafter
moves along the lattice links in a lapsedt towards neighbor-
ing nodes with the speedcl given by Eq.(2) [2–5]. Such a
relationship is no longer considered in finite difference lattice

Boltzmann(FDLB) models[27–31] which start directly from
the Boltzmann equation and have a better numerical stability.
In such models there is more freedom to choose the discrete
velocity set, as done recently in the thermal FDLB model of
Watari and Tsutahara[32] where the possibility of having
different sets of velocities allows to release the constraint of
constant temperature. Also, the use of FDLB models is
promising, e.g., when considering LB models for multicom-
ponent fluid systems, where the masses of the components
are not identical and Eq.(1) would lead to different lattice
speeds. In this context, FDLB models may be viewed as a
convenient alternative to interpolation supplemented LB
models[33–35].

FDLB models, as well as LB models, are known to intro-
duce spurious terms in the mass and momentum conserva-
tion equations, which are dependent on the lattice spacingds
and the time stepdt [31]. The behavior of an isothermal fluid
system subjected to FDLB simulation is governed by the
apparent values of the viscosity and/or diffusivity. The ex-
pression of these quantities with respect tods anddt depends
on the finite difference scheme used in the FDLB model.
Consequently, the choice of the numerical scheme may alter
significantly the macroscopic behavior of the fluid system
observed during simulations as well as the numerical stabil-
ity. This problem still lacks necessary clarification and
should be always considered in order to recover the correct
physical interpretation of simulation results.

The purpose of this paper is to investigate these numerical
aspects by using a FDLB model addressing the phase sepa-
ration kinetics in a van der Waals fluid. Phase separation in
liquid-vapor systems has not received as much attention as in
binary fluids[36]. Under the hypothesis of dynamical scaling
the late time kinetics can be characterized in terms of a
single length scaleRstd which grows according to the power
law Rstd, ta, wherea is the growth exponent[37]. The late
time growth, when hydrodynamics is neglected, is expected
to be described by the Allen-Cahn theory which gives a
growth exponenta=1/2 [38]. When hydrodynamics comes
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into play, the liquid-vapor system behaves similarly to binary
fluids so that a growth exponenta=2/3 is expected[36].
Previous numerical studies used molecular dynamics simula-
tions [39,40] and a LB model based on a free energy func-
tional [41–43]. In molecular dynamics simulations it was
found evidence for the growth exponent 1/2[39,40]. By
using the free-energy LB model, Osbornet al. [41] found the
growth exponents 2/3 and 1/2 at low and high viscosity,
respectively, independently on the system composition.
Mecke and Sofonea[42,43], using the same algorithm for an
off-symmetric system, found a crossover from 2/3 to 1/2 at
low viscosity, and 1/3 at high viscosity. We will compare
results of our model with the aforementioned ones.

To model the liquid-vapor system, a standard force term
[13,14,25] is added to the discretized Boltzmann equations.
The resulting FDLB model is described in Sec. II. In Sec. III
we introduce two numerical schemes, namely, the first order
upwind finite difference scheme and a higher order one
which uses flux limiters[44,45]. There we show the differ-
ence between FDLB, collide and stream LB and volumetric
LB models [46,47]. We thereafter discuss the spurious nu-
merical effects these schemes introduce in the fluid equa-
tions. Section IV reports the simulation results, where special
attention was given to the effects of the numerical schemes
on estimation of the growth exponent. In order to clarify the
phenomenology and estimate accurately the exponenta, we
monitored the size of domainsRstd by using three indepen-
dent measures. A discussion about the method and results
ends the paper.

II. THE MODEL

The two-dimensional(2D) FDLB model follows the LB
model for nonideal fluids[13,14,21,48,49]. The starting point
is provided by the set ofN partial derivatives equations re-
sulting from the discretization of the Boltzmann equation on
a square latticeL when the collision term is linearized using
the BGK approximation[50]. In nondimensional form, this
set reads

]t f i + eib]bf i =
1

xc2 f i
eqseib − ubdFb −

1

t
sf i − f i

eqd,

i = 0,1,…N. s3d

Since we will deal with a van der Waals fluid, we used the
following reference quantities for particle number density,
temperature and speed to get the nondimensional form(3) of
the discretized Boltzmann equations:nR=NA/Vmc, TR

=Tc, cR=ÎkBTc/m. Here NA is Avogadro’s number,Vmc is
the molar volume at the critical point, andTc is the critical
temperature. With this choice of reference quantities, the di-
mensionless speed is[51]:

c = cl/cR = Îu/x, s4d

whereu=T/TR is the dimensionless temperature and the con-
stantx equals 1/3 for the square lattice we use(see later for
details on the lattice) [31]. If we take the system size as the
reference lengthlR, we get the reference timetR from the

conditiontRcR= lR. The nondimensionalized lattice spacing is
defined by the number of lattice nodesN we choose along
the nondimensionalized system lengthL:

ds=
L

N
. s5d

The particle distribution functionsf i ; f isx ,td are defined
in the nodesx of the square latticeL. In theD2Q9 (2 dimen-
sions, 9 velocities) model we use in this paper,N=8 and the
velocitiesei are [2–5]:

e0 = 0,

ei = Xcos
psi − 1d

2
, sin

psi − 1d
2

Cc

si = 1,…,4d,

ei = XcosSp

4
+

psi − 5d
2

D, sinSp

4
+

psi − 5d
2

DCcÎ2

si = 5,…,8d. s6d

The equilibrium distribution functionsf i
eq= f i

eqsx ,td are
expressed as series expansions of the Maxwellian distribu-
tion function, up to second order with respect to the local
velocity u=usx ,td, whose Cartesian components areub [52]:

f i
eq= winF1 +

ei ·u

xc2 +
sei ·ud2

2x2c4 −
sud2

2xc2G . s7d

The weight coefficients are

wi = 5
4
9 si = 0d
1
9 si = 1,…,4d
1
36 si = 5,…,8d.

6 s8d

The local densityn=nsx ,td, as well as the components of the
local velocityu which enter Eq.(7), are calculated from the
distribution functions as follows:

n = o
i

f i = o
i

f i
eq, s9d

ub =
1

n
o

i

f ieib =
1

n
o

i

f i
eqeib. s10d

The force term in Eqs.(3) is given by[48,49]:

Fb =
1

n
]bspi − pwd + k]bs¹2nd, s11d

where

pi = un s12d

and

pw =
3un

3 − n
− 9

8n2 s13d

are the nondimensionalized pressures of the ideal and the van
der Waals fluid, respectively[51]. With the equation of state
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in the form (13), the critical point is located atu=1 andn
=1. The parameterk controls the surface tension[25]. The
mass and momentum equations are recovered from Eqs.(3)
after using the standard Chapman-Enskog procedure up to
second order with respect to Knudsen number Kn=ct /L.
These equations read[4,5,25]:

]tn + ]bsnubd = 0, s14d

]tsnuad + ]bsnuaubd = − ]apw + kn]as¹2nd

+ n]bfns]aub + ]buadg, s15d

where

n = xc2t s16d

is the physical valueof the kinematic viscosity[31]. The
particular numerical scheme used to solve Eqs.(3) may in-
troduce a spurious viscosity term that adds to the physical
value, as seen in the next section. Finally, we note that the
force term(11) allows to recover the Navier-Stokes equation
(15) where the pressurepw appearing on the right-hand side
is subjected to the van der Waals equation of state(13).

III. FINITE DIFFERENCE SCHEMES

A. First-order upwind scheme

The set of phase space discretized equations(3) may be
solved numerically by using an appropriate finite difference
scheme defined on the latticeL. Simple second-order
schemes like the centered one or the Lax-Wendroff scheme
[44,45,53] are unstable because of large values of the density
gradient which may occur in the interface regions separating
the liquid and vapor phases of the van der Waals fluid. The
first-order upwind scheme, which is also used in LB models
[2–5], is a good candidate because of its stability. When as-
sociated to the forward time stepping rule, this scheme gives
the following updating rule for the distribution functions de-
fined in nodexPL [31]:

f isx,t + dtd = f isx,td− s17d

cdt

ds
ff isx,td − f isx − dsei/c,tdg + dtQisx,td, s18d

where

Qi = Qisx,td

=
1

u
H 1

nsx,td
]bfpisx,td − pwsx,tdg + k]bf¹2nsx,tdgJ

3f i
eqsx,tdfeib − ubsx,tdg −

1

t
ff isx,td − f i

eqsx,tdg,

i = 0,1,…,N. s19d

As discussed in Ref.[31], finite difference schemes intro-
duce spurious numerical terms in the conservation equations.
This happens because thereal evolution equations recovered
(up to second order in space and time) from the updating
rules (17) are

]t f i + f]t
2f i + eib]bf i − c]b]geibeigf i = Qi ,

i = 0,1,…,N, s20d

where

f =
dt

2
, s21d

c =
ds

2c
. s22d

We get the following form of the conservation equations up
to second order in the Knudsen number:

]tn + ]bsnubd = sc − fd]a]bsxc2ndab + nuaubd, s23d

]tsnuad + ]bsnuaubd = − ]apw + kn]as¹2nd + nap]bfns]aub

+ ]buadg + xc2sc − fd]bf]asnubd

+ ub]an + ua]bng. s24d

Thus, the finite difference scheme introduces spurious terms,
depending on the quantitysc−fd, in both the conservation
equations[compare with Eqs.(14)–(15)], while the physical
value (16) of the kinematic viscosity is replaced by theap-
parent value[31]:

nap= xc2st + cd. s25d

One could useds, dt, and c such thatc=f⇔ds=cdt and
remove spurious terms in the Eqs.(23)–(24). In this case it
would benap=xc2st+dt /2d. In order to maintain the appar-
ent value of the viscosity close to the physical one and allow
very small values ofn, one should requiredt!t. Since the
condition c=f is equivalent to askN=L /cdt, one should
haveN*104 whent&10−3, beingc.L.1. This would re-
quire a huge computational effort when doing 2D or three-
dimensional simulations using the first order upwind FDLB
model. Higher order flux limiter schemes provide a possibil-
ity to overcome this problem giving a better stability. As we
will see further, these schemes improve the accuracy of the
FDLB simulations with respect to the upwind scheme, for
the same value of the numberN of lattice nodes.

As a matter of comparison we recall that the collide and
stream LB model is equivalent to an upwind FDLB model,
when also the relaxation term is calculated on the character-
istics line[31] and the choiceds=cdt is adopted. The result-
ing apparent value of the viscosity isnap=xc2st−dt /2d. For
this reason the collide and stream LB model suffers mainly
from the lack of stability whent.dt /2 so that very low
values of viscosity cannot be accessed[25].

B. Flux limiter schemes

Figure 1 shows two characteristics lines on the square
lattice involving the distribution functionsf1sx ,td and
f5sx ,td, respectively. For convenience, we denotegi,j

k the
value of the quantitygi in nodej at timet=kdt. According to
the general procedure to construct high order total variation
diminishing schemes using flux limiters[44,45,53] we re-
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write the updating rule(17) in a conservative form using two
fluxes [54–56]:

f i,j
k+1 = f i,j

k −
cdt

ds
sFi,j+1/2

k − Fi,j−1/2
k d + dtQi,j

k , s26d

where

Fi,j+1/2
k = f i,j

k +
1

2
S1 −

cdt

ds
Dsf i,j+1

k − f i,j
k dCsQi,j

k d s27d

and

Fi,j−1/2
n = Fi,s j−1d+1/2

n . s28d

The flux limiter CsQi,j
n d introduced in Eq.(27) is expressed

as a function of thesmoothness

Qi,j
n =

f i,j
n − f i,j−1

n

f i,j+1
n − f i,j

n . s29d

In particular, the second order Lax-Wendroff scheme is re-
covered forCsQi,j

n d=1. The upwind scheme, described in the
previous subsection, is recovered as another particular case,
when CsQi,j

n d=0. A wide choice of flux limiters are at our
disposal in the literature[44,45,53]. LB simulations reported
in this paper were done using the monitorized central differ-
ence limiter[44]:

CsQi,j
n d =5

0 , Qi,j
n ø 0

2Qi,j
n , 0 ø Qi,j

n ø
1
3

1 + Qi,j
n

2
, 1

3 ø Qi,j
n ø 3

2 , 3 ø Qi,j
n

6 s30d

but other limiters give qualitatively similar results.
Equations(26) satisfy the global particle and momentum

conservation. When using the first order upwind scheme, the
spurious terms introduced in the mass and momentum con-
servation equations are linearly dependent on the lattice
spacingds. Since flux limiter schemes are adapting them-
selves to the local smoothness(29) of the distribution func-
tions, it is rather cumbersome to derive analytical expres-
sions of the spurious numerical termc in these cases. LB
simulations of diffusion phenomena done using flux limiter
schemes suggest a second order dependence of the valuec
on the lattice spacingds [57] such thatc=sdsd2/2cL and the
apparent value of the kinematic viscosity(25) becomes

nap_flux = xc2Ft +
sdsd2

2cL
G . s31d

When the lattice spacing is a small quantity, the use of flux
limiter schemes is expected to improve the accuracy of
FDLB simulations as well as the stability.

A different approach that allows to avoid spurious terms
in the conservation equations is provided by the volumetric
LB scheme introduced in Ref.[46] which satisfies detailed
balance and achieves the desired order of accuracy. We will
refer to the fractional version of the aforementioned scheme
constructed in the case of a homogeneous fluid on a uniform
mesh[47] since we are using a regular and uniform lattice. In
the scheme proposed in Ref.[47] the value of the viscosity
can be reduced with respect to the collide and stream LB and
the Courant-Friedrichs-Levy number CFL=cdt /ds can be
smaller than 1. Moreover, some unphysical spurious invari-
ants are removed. Our scheme can have very small values of
viscosity since the numerical contribution to the value of
viscosity, proportional toc, can be reduced and made much
smaller than the physical term, proportional tot, without
having stability problems. This depends on the fact the in
finite difference schemes the values ofds anddt can be set
independently from the value ofc. Our choice ofdt andds is
such to guarantee that the CFL number is much less than 1
and that the unavoidable spurious terms, introduced by the
numerical scheme and proportional tosc−fd, can be done as
small as desired.

IV. SIMULATION RESULTS

In this section we report the results of our simulations.
For all runs we usedN=1024,ds=1/256, anddt=10−5. In
the following, lengths are expressed in units of lattice spac-
ing and time is expressed as the product of algorithm steps
by dt. All quenches below the critical temperature were to
the temperatureu=0.79 where the coexisting densities are
nliquid=1.956 andnvapor=0.226. Each simulation was started

FIG. 1. Characteristics lines on the square lattice, for the direc-
tions e1 (a) ande5 (b).
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with small fluctuations(0.1%) in the density about a mean
value n̂ that was either symmetric(n̂=1.09, liquid fraction
b=0.5) or slightly off-symmetricsn̂=1.0,b=0.45d. The pa-
rameter k controlling the surface tension was set to 5
310−6 to have an interface thickness of,6 lattice spacings.
The viscosity was varied by changingt. We fixed an upper
bound oft by the following argument. It is well known that
the continuum hypothesis and the Navier-Stokes equation are
valid only for small values of the Knudsen number Kn[58].
Since Kn=ct /L andc.L.1 in our simulations, this means
t&10−2. We implemented the upwind and the flux limiter
schemes and compared results whent=10−4. In this case the
spurious numerical contribution of the upwind scheme is
larger than the physical one. Numerical contributions get
negligible when the flux limiter scheme is considered in-
stead. Therefore one expects to observe qualitative and quan-
titative differences. We used also the valuet=10−3 with the
flux limiter scheme to access a higher viscosity regime.

In order to have different and independent tools to esti-
mate the domains size we used the following quantities:
R1std, the inverse of the length of the interfaces of domains,
measured by counting lattice points where the order param-
eter rsx ,td=nsx ,td− n̂ is such thatrsx ,tdrsx8 ,td,0;R2std,
the inverse of the first moment of the spherically averaged
structure factor

R2std = p
e Csk,tddk

e kCsk,tddk
, s32d

where k= uku is the modulus of the wave vector in Fourier
space, and

Csk,td = , r̃sk,tdr̃s− k,td. s33d

with r̃sk ,td the spatial Fourier transform of the order param-
eter rsx ,td. The angle brackets denote an average over a
shell in k space at fixedk. The last quantityR3std is defined
as the inverse of the first moment of the spherically averaged
structure factor of the fluid velocity

R3std = p
e Cusk,tddk

e kCusk,tddk
s34d

with Cusk,td= , uũskdu2.. In all the figuresR1 was multi-
plied by 4 000 000 to be shown in the same plot withR2 and
R3.

In Fig. 2 we present the three measures of domains size as
function of time for the caset=10−4 with flux limiter
scheme, and symmetric composition. It is interesting to note
that R2 andR3 have the same trend, with a similar prefactor.
This feature holds for all the runs we considered. This last
point is not obviousa priori. After a swift initial growth the
evolution of all quantities suggests the existence of the
growth exponent 2/3. This is in accordance with previous
studies on symmetric liquid-vapor systems at low viscosity
[41] when hydrodynamic flow is operating. In this regime
hydrodynamics is the mechanism to get domains circular
since the flow is driven by the difference in Laplace pressure
between points of different curvature on the boundary of
domains. This remark is confirmed when looking at configu-
rations of the densityn. In Fig. 3 we show contour plots of a

part of the whole system at consecutive times. The vapor
bubble in the down left corner att=12, while evaporating, is
rounded by the flow as it can be seen by comparing it with
the shape att=15.

An indication about the velocity field comes from the
structure factorCusk,td. In Fig. 4 we plot it at timet=15. It
exhibits a structure at a scale comparable with system size.
All velocity components decay becoming small at low wave-

FIG. 2. Evolution of domains size recovered fort=10−4,b
=0.5, and the flux limiter scheme:R1sDd , R2s+d , R3s•d. R’s are mea-
sured in lattice spacings andR1 has been multiplied by 4 000 000 to
be shown in the same plot. The straight line has slope 2/3.

FIG. 3. Contour plots of a portion 5123512 of the whole lattice
of the densityn in the case witht=10−4,b=0.5, and flux limiter
scheme. Color code: black/white→ liquid/vapor.
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lengths and contributing little to the overall dynamics. A
small bump can be seen at wavelength,8 corresponding to
capillary motion at interface length scale. A similar behavior
was observed in binary fluids[59].

In the case with the upwind scheme the estimation of the
growth exponent is more difficult since data are noisy and
none of theR’s shows a clear trend. From Fig. 5 it seems the
system enters a late regime characterized by an exponent
consistent with the value 1/2. We believe that this behavior
is due to spurious terms in the macroscopic equations that

are considerably larger when using the upwind scheme than
in the case with flux limiter. These terms produce a numeri-
cal diffusivity when they are not negligible. This is con-
firmed by the analysis of the velocity fields in the two cases.
In Fig. 6 we plot the order parameterr and velocity modulus
u along a horizontal cross section of the system taken at the
same long time. Two comments are in order here. It is quite
unavoidable to have spurious velocities at interfaces where
density gradients are present with LB models(irrespectively
of the particular model used[60]). And also the present
model shows this unpleasant feature. Nonetheless it is evi-
dent that the flux limiter scheme allows to dump consider-
ably these spurious contributions. Indeed, with flux limiter
the maximum value of velocity at interface is 0.13sMa

FIG. 4. Velocity structure factorCuskd at time t=15 in the case
with t=10−4,b=0.5, and flux limiter scheme.Cuskd is in arbitrary
units and the wavelength is measured in lattice spacings.

FIG. 5. Evolution of domains size in the case witht=10−4,b
=0.5 and the upwind scheme:R1sDd , R2s+d , R3s•d. R’s are mea-
sured in lattice spacings andR1 as been rescaled by 4 000 000 to be
shown in the same plot. The straight line has slope 1/2.

FIG. 6. Order parameterr (dashed line) and velocity modulusu
(full line) profiles are shown along the line taken aty=256 lattice
spacings from bottom at timet=20 for the upwind scheme(upper
panel) and flux limiter scheme(lower panel) with t=10−4,b=0.5.
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=u/cs=0.14d while with the upwind it is about two times
larger being 0.23sMa=0.26d. The high value of the Mach
number Ma makes the expansions(7) less reliable with the
upwind scheme.

Due to the better performance of the flux limiter scheme
we decided to adopt it for further simulations. In Fig. 7 we
plot the three measures of domains size as function of time
for the caset=10−3 with symmetric composition. After ini-
tial growth all the quantities suggest the existence of the
growth exponent 1/2. This is in accordance with previous
studies on liquid-vapor systems at high viscosity[41] at sym-
metric composition when growth is expected to be described
by the Allen-Cahn theory of interfaces dynamics which gives
an exponent 1/2[38] and hydrodynamics is not operating.
Due to limits imposed by system size we cannot access very
long times to probe whether the hydrodynamic regime is the
late regime as previously argued[41]. Figure 8 shows den-
sity contour plots at consecutive times. Growth seems to be
mainly driven by evaporation of vapor domains.

Finally, we considered the case of an off-symmetric sys-
tem with a liquid fractionb=0.45. In Fig. 9 we plot the three
measures of domains size as function of time for the caset
=10−4. After the initial growth all the quantities suggest the
existence of a growth exponent 2/3 which quite soon
changes to 1/2. In previous studies with a free-energy LB
model it was found the growth exponent to be 2/3 with
liquid fraction b=0.31 [41] and 2/3 crossing over to 1/2 at
b=0.17 [42]. The problem of off-symmetric liquid-vapor
phase separation was recently addressed in Ref.[61]. There
it was pointed out that in the case of a dispersion of liquid
drops in vapor, the growth should proceed with an exponent
1/2 and the result was proven in the case of highly asym-
metric composition withb=0.1. We believe that we are
probing a regime similar to that seen in two-dimensional

binary fluids where, once hydrodynamics flow has made do-
mains circular, Allen-Cahn growth takes over[36]. This in-
terpretation seems to be confirmed by configurations of the
system, presented in Fig. 10. They show that liquid drops in
the vapor matrix are almost circular att=6 so that the hy-
drodynamic mechanism is no more effective.

FIG. 7. Evolution of domains size in the case witht=10−3,b
=0.5, and flux limiter scheme:R1sDd , R2s+d , R3s•d. R’s are mea-
sured in lattice spacings andR1 as been multiplied by 4 000 000 to
be shown in the same plot. The straight line has slope 1/2.

FIG. 8. Contour plots of a portion 5123512 of the whole lattice
of the densityn in the case witht=10−3,b=0.5, and flux limiter
scheme. Color code: black/white→ liquid/vapor.

FIG. 9. Evolution of domains size in the case witht=10−4,b
=0.45, and flux limiter scheme:R1sDd , R2s+d , R3s•d. R’s are mea-
sured in lattice spacings andR1 as been multiplied by 4 000 000 to
be shown in the same plot. The straight lines have slopes 2/3 and
1/2.
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V. CONCLUSIONS

The correct choice of the numerical scheme is essential to
recover the real physics of a fluid system subjected to LB
simulations. In the case of a liquid-vapor system we have
seen that simulation results exhibit significant changes when
the numerical contribution of the finite difference scheme to
the apparent value of the transport coefficients becomes com-
parable with the expected physical value. The numerical con-
tribution of the first order upwind scheme is linearly depen-
dent on the lattice spacingds and switches to an higher order
for the flux limiter scheme. Sinceds,1, the flux limiter
scheme reduces the computing effort in terms of required

lattice nodes and gives physical results which are more ac-
curate for the same number of lattice nodes per unit length.
Spurious velocities at interfaces can be considerably damped
and very low viscosity systems can be simulated preserving
numerical stability. The main limitation comes from the re-
quirement of a small time step when very low values of
viscosity are needed. To give an idea of the CPU time we
report that our code takes 6 h toperform 105 algorithm steps
by using 32 xeon 3.055 GHz processors on the IBM Linux
Cluster 1350 at CINECA[62] with Myrinet IPC network and
the Portable Extensible Toolkit for Scientific Computation
(PETSc 2.1.6) developed at Argonne National Laboratory,
Argonne, Illinois[63].

The model allowed to clarify the picture of phase separa-
tion in liquid-vapor system. We found that the growth expo-
nent depends on either the fluid viscosity and the system
composition. When liquid and vapor are present in the same
amount, the growth exponent is 2/3 and 1/2 at low and high
viscosity, respectively. When the liquid fraction is less abun-
dant than the vapor one, we can access a late time regime at
low viscosity. In this regime the hydrodynamic transport is
no more effective so we are able to see the crossover from
the exponent 2/3 to 1/2 which is characteristic of the Allen-
Cahn growth mechanism.

Finally, we note that our results as well as previous ones
have been obtained in the case of isothermal systems. It
would be interesting to incorporate the energy conservation
equation into the model to allow nonuniform temperatures in
the liquid-vapor system undergoing phase separation.
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