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Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems
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In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a
two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and
an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee
a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find
evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the

liquid-vapor ratio.
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I. INTRODUCTION

Lattice Boltzmann(LB) models approach physical phe-
nomena in fluid systems using a phase-space discretize
form of the Boltzmann equatiofil—5]. Conservation equa-
tions are derived by calculating moments of various order o

this equation[6—12. After the publication of the first LB
model which exhibits phase separatii8,14, LB models

were widely used to investigate the complex behavior o

single- or multicomponent/phase fluid systef8sh] and re-
fer mainly to isothermal systemgl5-25. This limitation
comes from the constant value of the lattice spgedhich
in LB models is related to the temperaturgthe lattice spac-
ing &s and the time stept through two separate relations

C [kgT
VX xm
S
CFg, (2

where c=1kgT/m is the isothermal speed of sound for an

ideal fluid, m is the mass of fluid particles is a constant
depending on the geometry of the lattice, dgdis Boltz-
mann’s constanf5,26].

According to the “collide and stream” philosophy of LB
models, fluid collides in the lattice nodes and thereafte

moves along the lattice links in a lapgetowards neighbor-
ing nodes with the speeg] given by Eq.(2) [2-5]. Such a

PACS nunerd7.11+j, 47.20.Hw, 05.70.Ln

Boltzmann(FDLB) models[27-31 which start directly from

the Boltzmann equation and have a better numerical stability.
I%such models there is more freedom to choose the discrete
Velocity set, as done recently in the thermal FDLB model of
Watari and Tsutaharg32] where the possibility of having
different sets of velocities allows to release the constraint of
constant temperature. Also, the use of FDLB models is
Promising, e.g., when considering LB models for multicom-
ponent fluid systems, where the masses of the components
are not identical and Eq1) would lead to different lattice
speeds. In this context, FDLB models may be viewed as a
convenient alternative to interpolation supplemented LB
models[33-35.

FDLB models, as well as LB models, are known to intro-
duce spurious terms in the mass and momentum conserva-
tion equations, which are dependent on the lattice spagsng
and the time stept [31]. The behavior of an isothermal fluid
system subjected to FDLB simulation is governed by the
apparent values of the viscosity and/or diffusivity. The ex-
pression of these quantities with respect$@and &t depends
on the finite difference scheme used in the FDLB model.
Consequently, the choice of the numerical scheme may alter
significantly the macroscopic behavior of the fluid system
observed during simulations as well as the numerical stabil-
ity. This problem still lacks necessary clarification and
should be always considered in order to recover the correct
'ohysical interpretation of simulation results.

The purpose of this paper is to investigate these numerical
aspects by using a FDLB model addressing the phase sepa-

relationship is no longer considered in finite difference lattice,ation kinetics in a van der Waals fluid. Phase separation in
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liquid-vapor systems has not received as much attention as in
binary fluids[36]. Under the hypothesis of dynamical scaling
the late time kinetics can be characterized in terms of a
single length scal&(t) which grows according to the power
law R(t) ~t¢, wherea is the growth exponeri87]. The late
time growth, when hydrodynamics is neglected, is expected

Electronic address¢o be described by the Allen-Cahn theory which gives a

growth exponentr=1/2 [38]. When hydrodynamics comes
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into play, the liquid-vapor system behaves similarly to binaryconditiontgcgr=Ig. The nondimensionalized lattice spacing is
fluids so that a growth exponent=2/3 is expected[36]. defined by the number of lattice nodBswe choose along
Previous numerical studies used molecular dynamics simulahe nondimensionalized system lendth
tions [39,40 and a LB model based on a free energy func- L
tional [41-43. In molecular dynamics simulations it was o5=—, (5)
found evidence for the growth exponent 1{29,40. By N
using the free-energy LB model, Osba@nal. [41] found the
growth exponents 2/3 and 1/2 at low and high viscosity,
respectively, independently on the system composition
Mecke and Sofonepd2,43, using the same algorithm for an
off-symmetric system, found a crossover from 2/3 to 1/2 a
low viscosity, and 1/3 at high viscosity. We will compare e =0,
results of our model with the aforementioned ones.

To model the liquid-vapor system, a standard force term ( ai-1) | w(i- 1))

e =|cos sin c

The particle distribution function§ = f;(x,t) are defined
in the nodex of the square lattic&. In theD2Q9 (2 dimen-
sions, 9 velocitiesmodel we use in this papek/=8 and the
tvelocitieseI are[2-5]:

[13,14,25 is added to the discretized Boltzmann equations. s 2,

The resulting FDLB model is described in Sec. Il. In Sec. llI

we introduce two numerical schemes, namely, the first order (i=1,..4),

upwind finite difference scheme and a higher order one

which uses flux limiter§44,45. There we show the differ- _ 7 w(i-5) [ w(i-5) I
ence between FDLB, collide and stream LB and volumetric i (C°5<Z T ) n(Z T ))0\2

LB models[46,47. We thereafter discuss the spurious nu- )

merical effects these schemes introduce in the fluid equa- (i=5,...8). (6)
tions. Section IV reports the simulation results, where special e equilibrium distribution functiong®%=f*%x,t) are

attention was given to the effects of the numerical schemeg,ressed as series expansions of the Maxwellian distribu-
on estimation of the growth exponent. In order to clarify the;, function, up to second order with respect to the local

phenomenology and estimate accurately the expomeme q|qcity y=u(x,t), whose Cartesian components agg52]:
monitored the size of domairR(t) by using three indepen- y (x,0), p pe52]:

. : ) )2 2
dent measures. A discussion about the method and results f29= LS R Gl R
ends the paper. XS 2%t 2xc?
The weight coefficients are
Il. THE MODEL
N 5 (=0
The two-dimensiona{2D) FDLB model follows the LB R
model for nonideal fluid§13,14,21,48,4P The starting point wi=y5 (i=1,..,4) (8)
is provided by the set ofV partial derivatives equations re- 3i6 (i=5,...,8).

sulting from the discretization of the Boltzmann equation on _
a square lattic when the collision term is linearized using 1he local densityn=n(x,t), as well as the components of the

the BGK approximatior{50]. In nondimensional form, this local velocityu which enter Eq(7), are calculated from the
set reads distribution functions as follows:

n:Efi:Effq, 9

1 1
ﬁtfi + Q,Bﬁﬁﬁ = Ef Iea(elﬁ_ UB)FB_ ;_(fl - fFCI),

1 1
i=0,1,.\. &) Up= 2 fiep= 2 . (10)

Since we will deal with a van der Waals fluid, we used the
following reference quantities for particle number density,
temperature and speed to get the nondimensional {8yrof 1 . )
the discretized Boltzmann equationsig=Na/Vpe, Tr Fg= ﬁﬁ,e(p' —p") + kdg(VN), (11)
=T., cr=1kgT./m. Here N, is Avogadro’s numbery,,. is
the molar volume at the critical point, afid is the critical ~ where
temperature. With this choice of reference quantities, the di- i

X i p'=6n (12
mensionless speed [i51]:

The force term in Eqs(3) is given by[48,49:

— and
c=¢glcg=V0ly, (4)
. . . w_ 3N g,
whered=T/Tg s the dimensionless temperature and the con- =3 8" (13

stanty equals 1/3 for the square lattice we ysee later for
details on the lattice[31]. If we take the system size as the are the nondimensionalized pressures of the ideal and the van
reference lengthg, we get the reference timig from the  der Waals fluid, respectivelyp1]. With the equation of state
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in the form (13), the critical point is located a#=1 andn afi + ¢(9t2fi + e 0t — g, g8, fi = Q
=1. The parametek controls the surface tensid25]. The
mass and momentum equations are recovered from(Bps. iz0.1.. N\ (20)

after using the standard Chapman-Enskog procedure up to
second order with respect to Knudsen number Kn£.  where
These equations redd,5,25:

bt
dn+dg(nug) =0, (14) d)—E, (21
a(nu,) + dg(Nu ug) == d,0" + knd,(Vn) Ss
=—. 22
+ Vaﬁ[n((?aUB + aﬁua)], (15) (/l 2c ( )
where We get the following form of the conservation equations up

to second order in the Knudsen number:

N+ ap(Nug) = (Y= B)dadpg(XC?NS,p+ NULMR),  (23)

v=xC?r (16)

is the physical valueof the kinematic viscosity{31]. The
particular numerical scheme used to solve E@s.may in- B w )
troduce a spurious viscosity term that adds to the physical %(NUa) + dg(NUUE) = = 9oP" + KNIL(VN) + vagdf N(9,Up
value, as seen in the next section. Finally, we note that the + U, ] + xC(p— B) g da(NUp)

force term(11) allows to recover the Navier-Stokes equation
(15) where the pressumg” appearing on the right-hand side

is subjected to the van der Waals equation of stag. Thus, the finite difference scheme introduces spurious terms,
depending on the quantitiy/—¢), in both the conservation
equationgcompare with Eqs(14)—<15)], while the physical

A. First-order upwind scheme value (16) of the kinematic viscosity is replaced by tap-

The set of phase space discretized equati@snay be Parent value{31]:
solved numgrically by using an apprqpriate finite difference vap:)(cz(7+ ). (25)
scheme defined on the latticE. Simple second-order
schemes like the centered one or the Lax-Wendroff schem@ne could usess, &t, andc such thaty=¢ - ss=cét and
[44,45,53 are unstable because of large values of the densitfemove spurious terms in the Eq23)—«24). In this case it
gradient which may occur in the interface regions separatingvould be v,,=xc?(7+8t/2). In order to maintain the appar-
the liquid and vapor phases of the van der Waals fluid. Thent value of the viscosity close to the physical one and allow
first-order upwind scheme, which is also used in LB modelsvery small values o, one should requirét< 7. Since the
[2-5], is a good candidate because of its stability. When aseondition ¢/=¢ is equivalent to askN=L/cét, one should
sociated to the forward time stepping rule, this scheme givebaveN= 10* when =103, beingc=L=1. This would re-
the following updating rule for the distribution functions de- quire a huge computational effort when doing 2D or three-

+Ugd, N+ U,dgn]. (24)

IIl. FINITE DIFFERENCE SCHEMES

fined in nodex e £ [31]: dimensional simulations using the first order upwind FDLB
model. Higher order flux limiter schemes provide a possibil-
fioxt+ 8t = fi(x, - (17 ity to overcome this problem giving a better stability. As we

will see further, these schemes improve the accuracy of the
FDLB simulations with respect to the upwind scheme, for
the same value of the numbirof lattice nodes.
As a matter of comparison we recall that the collide and
where stream LB model is equivalent to an upwind FDLB model,
Q =Qi(x,1) when also the relaxation term is calculated on the character-
istics line[31] and the choiceSs=cét is adopted. The result-
ing apparent value of the viscosity ig,= xc?(7— 8t/2). For
this reason the collide and stream LB model suffers mainly
from the lack of stability whenr=6t/2 so that very low

1 . .
XfEAx, les — ugx,)] - ;[fi(X,t) - ffx.)], values of viscosity cannot be acces$af].

- fx- me/cn]+ AQKY, (19

1) 1 .
) 5{ n(x,p AP D P+ KﬁB[Vzn(X,t)]}

B. Flux limiter schemes

1=0,1,..N. (19 Figure 1 shows two characteristics lines on the square
As discussed in Ref31], finite difference schemes intro- lattice involving the distribution functionsf,(x,t) and
duce spurious numerical terms in the conservation equation$s(X,t), respectively. For convenience, we denqg the
This happens because treal evolution equations recovered value of the quantity; in nodej at timet=két. According to
(up to second order in space and tinfeom the updating the general procedure to construct high order total variation
rules(17) are diminishing schemes using flux limitef€4,45,53 we re-

046702-3



SOFONEAet al. PHYSICAL REVIEW E 70, 046702(2004

r

0 , (E){fjso
ZICH Osﬂjsg
PO")=9 1+6" 30
. IR e
2 , 3${fj

\
but other limiters give qualitatively similar results.
Equations(26) satisfy the global particle and momentum
conservation. When using the first order upwind scheme, the
spurious terms introduced in the mass and momentum con-
servation equations are linearly dependent on the lattice
spacing ds. Since flux limiter schemes are adapting them-
selves to the local smoothneg9) of the distribution func-
tions, it is rather cumbersome to derive analytical expres-
sions of the spurious numerical terghin these cases. LB
simulations of diffusion phenomena done using flux limiter
schemes suggest a second order dependence of thealue
on the lattice spacings [57] such thaty=(ds)%/2cL and the
apparent value of the kinematic viscosi{85) becomes

59)?
Vap flux = XCZ{ T+ %] . (31)
FIG. 1. Characteristics lines on the square lattice, for the direc- N
tionse; (a) andes (b). When the lattice spacing is a small quantity, the use of flux
limiter schemes is expected to improve the accuracy of
write the updating rul¢l17) in a conservative form using two FDLB simulations as well as the stability.
fluxes[54-54: A different approach that allows to avoid spurious terms
in the conservation equations is provided by the volumetric
LB scheme introduced in Ref46] which satisfies detailed
f|<+1 fk _ (F. e kj )+ &er’ (26)  balance and achieves the desired order of accuracy. We will
refer to the fractional version of the aforementioned scheme
constructed in the case of a homogeneous fluid on a uniform
mesh[47] since we are using a regular and uniform lattice. In
the scheme proposed in R¢A7] the value of the viscosity
can be reduced with respect to the collide and stream LB and
|k|+1/2 fk (1__)“' - )\If(G) ) @7 the Courant-Friedrichs-Levy number CI_:bét/(Ss can l_)e _
2 j ] B smaller than 1. Moreover, some unphysical spurious invari-
ants are removed. Our scheme can have very small values of
viscosity since the numerical contribution to the value of
and viscosity, proportional tas, can be reduced and made much
smaller than the physical term, proportional tp without
- 1/2= Fliopewe- (2g8)  having stability problems. This depends on the fact the in
finite difference schemes the valuesdsfand &t can be set
independently from the value of Our choice ofst and dsis
The flux limiter ¥(®{')) introduced in Eq(27) is expressed such to guarantee that the CFL number is much less than 1
as a function of thesmoothness and that the unavoidable spurious terms, introduced by the
numerical scheme and proportional(i- ¢), can be done as
small as desired.

where

f”4 —fn 1
— _h L=
o= (29
i,j+1 ij
IV. SIMULATION RESULTS

In particular, the second order Lax-Wendroff scheme is re- |n this section we report the results of our simulations.
covered for\If({fj):l. The upwind scheme, described in the For all runs we usedN=1024, §s=1/256, andst=10"5. In
previous subsection, is recovered as another particular case following, lengths are expressed in units of lattice spac-
when¥(07,)=0. A wide choice of flux limiters are at our ing and time is expressed as the product of algorithm steps
disposal in the literaturg44,45,53. LB simulations reported by &. All qguenches below the critical temperature were to
in this paper were done using the monitorized central differthe temperaturé#=0.79 where the coexisting densities are
ence limiter[44]: Niiguia=1.956 andn,,p,~=0.226. Each simulation was started
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with small fluctuationg0.1%) in the density about a mean
value i that was either symmetrih=1.09, liquid fraction
B=0.5 or slightly off-symmetric(n=1.0,8=0.45. The pa-
rameter « controlling the surface tension was set to 5
X 1078 to have an interface thickness % lattice spacings.
The viscosity was varied by changing We fixed an upper
bound of 7 by the following argument. It is well known that
the continuum hypothesis and the Navier-Stokes equation are r
valid only for small values of the Knudsen number (G8]. s 2
Since Kn=cr/L andc=L=1 in our simulations, this means i e
7=102 We implemented the upwind and the flux limiter I 2°
schemes and compared results wherl0™. In this case the r s
spurious numerical contribution of the upwind scheme is | 450
larger than the physical one. Numerical contributions get
negligible when the flux limiter scheme is considered in-
stead. Therefore one expects to observe qualitative and quan- 10 &
titative differences. We used also the vatrel0® with the L ©
flux limiter scheme to access a higher viscosity regime. =
In order to have different and independent tools to esti-
mate the domains size we used the following quantities: t
Ry(t), the inverse of the length of the interfaces of domains, s 5 Evolution of domains size recovered for 1074, 8
measured by counting lattice points where the order param= 5 and the flux limiter schem&,(A), Ry(e), Rs(*). R's are mea-
eter p(x,t)=n(x,t)— is such thatp(x,t)p(x",t1) <O;Ra(t),  sured in lattice spacings amj has been multlplied by 4 000 000 to
the inverse of the first moment of the spherically averagedge shown in the same plot. The straight line has slope 2/3.
structure factor

Rh R2: R3

[ C(k Hdk part of the whole system at consecutive times. The vapor
Rt)=m—————, (32 bubble in the down left corner &t 12, while evaporating, is
JkClk.t)dk rounded by the flow as it can be seen by comparing it with
wherek=|k| is the modulus of the wave vector in Fourier the shape at=15.
space, and An indication about the velocity field comes from the
structure factorC,(k,t). In Fig. 4 we plot it at timet=15. It

Clk,t) = <p(k,p(=k,t)> (33)  exhibits a structure at a scale comparable with system size.
with p(k, t) the spatial Fourier transform of the order param-All velocity components decay becoming small at low wave-
eter p(x,t). The angle brackets denote an average over a
shell ink space at fixed. The last quantityR,(t) is defined
as the inverse of the first moment of the spherically averagec
structure factor of the fluid velocity
J Cyk,t)dk
Ry(t) =7 TKC,(k )k (34
with C(k,t)=<[T(k)|>>. In all the figuresR, was multi-
plied by 4 000 000 to be shown in the same plot vihand
Rs.
In Fig. 2 we present the three measures of domains size e
function of time for the caser=10% with flux limiter
scheme, and symmetric composition. It is interesting to note
thatR, andR; have the same trend, with a similar prefactor.
This feature holds for all the runs we considered. This last
point is not obviousa priori. After a swift initial growth the
evolution of all quantities suggests the existence of the
growth exponent 2/3. This is in accordance with previous
studies on symmetric liquid-vapor systems at low viscosity
[41] when hydrodynamic flow is operating. In this regime
hydrodynamics is the mechanism to get domains circular
since the flow is driven by the difference in Laplace pressure
between points of different curvature on the boundary of FIG. 3. Contour plots of a portion 522512 of the whole lattice
domains. This remark is confirmed when looking at configu-of the densityn in the case withr=10",3=0.5, and flux limiter
rations of the density. In Fig. 3 we show contour plots of a scheme. Color code: black/white liquid/vapor.
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FIG. 4. Velocity structure facto€,(k) at timet=15 in the case
with 7=107%,8=0.5, and flux limiter schemeC,(k) is in arbitrary
units and the wavelength is measured in lattice spacings.

lengths and contributing little to the overall dynamics. A
small bump can be seen at wavelengtB corresponding to
capillary motion at interface length scale. A similar behavior
was observed in binary fluid$9].

In the case with the upwind scheme the estimation of the
growth exponent is more difficult since data are noisy and
none of theR's shows a clear trend. From Fig. 5 it seems the
system enters a late regime characterized by an exponent
consistent with the value 1/2. We believe that this behavior
is due to spurious terms in the macroscopic equations that

: i
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FIG. 6. Order parametgr (dashed lingand velocity modulusi
(full line) profiles are shown along the line takenyat256 lattice
spacings from bottom at time=20 for the upwind schem@ipper
pane) and flux limiter schemglower pane) with =107, 3=0.5.

10 |

A
A
290
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(Yo}
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a 20

FIG. 5. Evolution of domains size in the case with10™,3
=0.5 and the upwind schem®&;(A), Ry(c), Ry(¢). R's are mea-

10
t

are considerably larger when using the upwind scheme than
in the case with flux limiter. These terms produce a numeri-
cal diffusivity when they are not negligible. This is con-
firmed by the analysis of the velocity fields in the two cases.
In Fig. 6 we plot the order parameterand velocity modulus

u along a horizontal cross section of the system taken at the
same long time. Two comments are in order here. It is quite
unavoidable to have spurious velocities at interfaces where
density gradients are present with LB modgtsespectively

of the particular model usef60]). And also the present
model shows this unpleasant feature. Nonetheless it is evi-
dent that the flux limiter scheme allows to dump consider-

sured in lattice spacings amR] as been rescaled by 4 000 000 to be ably these spurious contributions. Indeed, with flux limiter

shown in the same plot. The straight line has slope 1/2.

the maximum value of velocity at interface is 0.1Bla
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FIG. 7. Evolution of domains size in the case with1073, 3
=0.5, and flux limiter scheme®;(A), Ry(c), Rs(¢). R's are mea-
sured in lattice spacings amR|{ as been multiplied by 4 000 000 to
be shown in the same plot. The straight line has slope 1/2.

FIG. 8. Contour plots of a portion 522512 of the whole lattice
of the densityn in the case withr=1073,3=0.5, and flux limiter
scheme. Color code: black/white liquid/vapor.

=u/cs=0.14 while with the upwind it is about two times

larger being 0.23Ma=0.26. The high value of the Mach pinary fluids where, once hydrodynamics flow has made do-
number Ma makes the expansiofr§ less reliable with the mains circular, Allen-Cahn growth takes oV@&6]. This in-
upwind scheme. terpretation seems to be confirmed by configurations of the

Due to the better performance of the flux limiter schemesystem, presented in Fig. 10. They show that liquid drops in
we decided to adopt it for further simulations. In Fig. 7 we the vapor matrix are almost circular &6 so that the hy-
plot the three measures of domains size as function of tim@rodynamic mechanism is no more effective.
for the caser=10"2 with symmetric composition. After ini-
tial growth all the quantities suggest the existence of the
growth exponent 1/2. This is in accordance with previous L
studies on liquid-vapor systems at high visco§#ty] at sym-
metric composition when growth is expected to be described °
by the Allen-Cahn theory of interfaces dynamics which gives
an exponent 1/238] and hydrodynamics is not operating. o
Due to limits imposed by system size we cannot access very 0:: )
long times to probe whether the hydrodynamic regime is the 10
late regime as previously argugdl]. Figure 8 shows den-
sity contour plots at consecutive times. Growth seems to be
mainly driven by evaporation of vapor domains.

Finally, we considered the case of an off-symmetric sys-
tem with a liquid fraction3=0.45. In Fig. 9 we plot the three
measures of domains size as function of time for the ease L
=10 After the initial growth all the quantities suggest the
existence of a growth exponent 2/3 which quite soon
changes to 1/2. In previous studies with a free-energy LB 10
model it was found the growth exponent to be 2/3 with o L L
liquid fraction 8=0.31[41] and 2/3 crossing over to 1/2 at 107" 1 10
B=0.17 [42]. The problem of off-symmetric liquid-vapor t
phase separation was recently addressed in[B&f. There
it was pointed out that in the case of a dispersion of liquid F|G. 9. Evolution of domains size in the case with104, 3
drops in vapor, the growth should proceed with an exponent (.45, and flux limiter scheme®;(A), Ry(°), Rs(*). R's are mea-
1/2 and the result was proven in the case of highly asymsured in lattice spacings amj as been multiplied by 4 000 000 to
metric composition with3=0.1. We believe that we are be shown in the same plot. The straight lines have slopes 2/3 and
probing a regime similar to that seen in two-dimensionall/2.
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lattice nodes and gives physical results which are more ac-
curate for the same number of lattice nodes per unit length.
Spurious velocities at interfaces can be considerably damped
and very low viscosity systems can be simulated preserving
numerical stability. The main limitation comes from the re-
quirement of a small time step when very low values of
viscosity are needed. To give an idea of the CPU time we
report that our code takes h toperform 16 algorithm steps

by using 32 xeon 3.055 GHz processors on the IBM Linux
Cluster 1350 at CINECA62] with Myrinet IPC network and

the Portable Extensible Toolkit for Scientific Computation
(PETSc 2.1.p developed at Argonne National Laboratory,
Argonne, Illinois[63].

The model allowed to clarify the picture of phase separa-
tion in liquid-vapor system. We found that the growth expo-
nent depends on either the fluid viscosity and the system
composition. When liquid and vapor are present in the same
amount, the growth exponentis 2/3 and 1/2 at low and high
viscosity, respectively. When the liquid fraction is less abun-
dant than the vapor one, we can access a late time regime at
low viscosity. In this regime the hydrodynamic transport is
no more effective so we are able to see the crossover from

FIG. 10. Contour plots of a portion 532512 of the whole the exponent 2/3 to 1/2 which is characteristic of the Allen-
lattice of the densityn in the case withr=10"%,5=0.45. Color ~ Cahn growth mechanism.

code: black/white— liquid/vapor. Finally, we note that our results as well as previous ones
have been obtained in the case of isothermal systems. It
V. CONCLUSIONS would be interesting to incorporate the energy conservation

equation into the model to allow nonuniform temperatures in
The correct choice of the numerical scheme is essential tthe liquid-vapor system undergoing phase separation.

recover the real physics of a fluid system subjected to LB
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